Zaslavsky’s Theorem on acyclic orientations of signed graphs

Definitions:

2 is a signed graph

o is the function that assigns +1 or -1 to each edge

k is a signed coloring of 2, k is proper if k(v) - a(e)k(w) is nonzero for all e = vw

T is an orientation of 2, each half edge is assigned either +1 or -1. +1 means the arrow
points toward the vertex, -1 means the arrow points away from the vertex. T satisfies
T(v,e)*t(w,e) = -o(e) for each e = vw

X is the signed chromatic polynomial, x(2,2A+1) counts how many proper colorings in A
signed colors there are on 2.

X\b is the zero free (or balanced) signed chromatic polynomial, x\b(Z,2\) counts how
many proper colorings in A signed colors with none of these colors being zero, there are
on 2

Z is the covering graph of 2. For each vertex v in 2, there are vertices +v and -v in Z For
each edge in 2, there are edges ¢, € and e,,ln 3.

p is the projection from £ to 5. p(ev) vwheree=t,p@E)=pE)=e

p~-1 is the lifting function from X to 5 pA-1(v) = {+v,-v}, pA-1(e) = {§ ,§ }

The covering graph satisfies the following: e = vw lifts to € = (e,v)(g,w) and ’e“z= (-ev)(-g,W)
Wlth £,€,= 0(e)

k is the Ilfted colorlng on 2, T is the lifted orientation which satisfy the following

k(ev) = ek(v) and T(ev,8) = e1(v,€)

It is worth noting that on X all edges are positive and the orientation T has both half
edges pointing in the same direction

A cycle in a signed graph is a set of vertices and edges such that they form a closed
loop in the underlying unsigned graph and for each vertex in the cycle, there is an arrow
pointing toward the vertex and an arrow pointing away from out.

C(2) is the cyclic part of 2, the union of all cycles in X

I(k) is the set of all improper edges in 2 under k, i.e. the set of all edges e = vw in Z, such
that k(v) = o(e)k(w)

Switching 2 by v means that v aSS|gns +1 or -1 to each vertex of Z and k,T and ¢ are
replaced by KT Yand @’ where if e £ vw then K'(v) = u(v)k(v), k"(w)=u(w)k(w),
a(e) = v(v)u(w)o(e) and TV( e) = V(V)T(w,€)

A cycle is positive if the product of the signs of its edges is positive. An edge set is
balanced if every cycle in it is positive

Let S be a subset of the edges of 2. Then Z/S is the graph constructed by first switching
2 and k, so that every balanced component of S has all positive edges, then performing
unsigned contraction on the edges of S. 2/S is defined up to switching.



k’ is the induced coloring and T’ the induced orientation on 2/S. k’ = k on vertices
unaffected by contraction and k’ assigns one of the colors of the original vertices to the
new vertex that is created by contraction.

The following statements we will assume without proof. The proofs are all
straightforward, but some are lengthy and tedious.

Lemma 1: C ( /5) p (( (/C > ) which is to say that when a cycle in 2 is lifted, it
becomes one or more cycles in Z and when a cycle in Sis projected, it becomes part of
acyclein 2

This is proved by considering a positive cycle Vi7Vy...7Va 7V} in 5 and noticing
that it lifts to two distinct cycles in 2, a non positive cycle in 2 lifts to a single cycle in 2
and that a cycle in 2 projects to a single cycle in 2

Lemma 2: I (/V ): P (I (k)) which is to say that an improper/proper edge
remains improper/proper when lifted or projected. This follows directly from the
definitions

Lemma 3: 1 (k ) = I(k) which is to say that switching an edge does not change
whether or not it is improper. This follows from the definitions by considering when one,
both or neither of two adjacent vertices are assigned -1 by v

Lemma 4: I(k) is balanced if k is zero free and every vertex, v, in an unbalanced
component of I(k) must have k(v)=0

This can be proven by assuming that I(k) has a nonpositive cycle, v, 2V, 7...2Vy? v, and
using the fact that all of the edges connecting these vertices are improper to show that
k(v,) = -k(v,) meaning that k(v,)=0. All vertices in the same component of I(k) must have
the same color up to sign.

Lemma 5: There is a bijection between colorings k of 2 and proper colorings, k’ of
contractions of 2. l.e. For every coloring k, a unique induced coloring k’ can be
constructed by switching and contracting Z into 2/1(k). Similarly, given a proper coloring
k’ of 2/A, a unique coloring k of 2 can be constructed such that A = I(k). In addition, the
induced coloring k’ of I(k) is proper. Also, if k is zero free, then the induced coloring k’ of
2/I(k) is zero free and vice versa.

k’ can be constructed from k by switching k and % until I(k) is positive, then contracting
2. k can be constructed from k’ by k=k’ on balanced components of I(k), coloring
unbalanced components 0, and then reversing the switching on 2.

T be Vool beons herseé



Just like in the proof of Stanley’s Theorem, we begin by constructing a unique
orientation T, for every proper coloring k, of 2, using the rule

/C ( \/,'C ) k.(\/) s ,t/ (V// C)k_[W) D¢ Callthis property (*‘)
Using the fact that

o(e)=-Te) tiwe)
TWVe) (kW)-ote) k()0

In other words, define T by

ke (V) - o(e)k(v))
T(vye) = T(kcv) rte)e)[ = 5iom (kv-ce)ke )

If k and T satisfy (*‘) for 2, then call (k,T) a proper pair

If k is proper then k(v)-o(e)k(w) is non zero so T is well defined, (k,T) is a proper pair and T

is unique by construction.

If (k,T) is a proper pair, then t(v,e)*(k(v)-o(e)k(w))>0 so k(v)-o(e)k(w) is nonzero so K is

proper on e. Therefore for every proper coloring, k, of 2, there is one and only one

proper pair (k,T)

So there are the same number of proper pairs as there are proper colorings, therefore
X(2A+1) = the number of proper pairs where Kk is a coloring in A colors, and (x*b)(2\) = the

number of proper pairs where k is a zero-free coloring in A colors

It is yvorth noting that by lifting the coloring k on 2 and the orientation T on 2 to k and T

on 2, property (i‘) is preserved and it is identical to Stanley’s definition of proper pair

when each edge has both of its arrows pointing the same way. Therefore (k,T) is a

proper pair iff (K,3) is.

For example:
Graph 2 Graph 2 with proper coloring k Graph 2 with proper pair
to (2) 1) (D (1)

= (=) (A)=—="10)



Covering graph 2 with proper pair (k,T)

( -2) () — For convenience, when discussing the covering

A/ graph,@>—>¢ s written as —>—e
@ ﬁ‘

In analogy with Stanley’s proof we define a compatible pair, (k,T) as a pair that satisfies
/t: ( \//'C ) k(‘/) t ,t/ (V‘// e)k‘(W) Z O Ccallthis property (*)/

The definition of compatible pairs is the same as the definition of proper pairs except
that it allows for improper colorings. It is important to note that if k is improper on edge
e, then it has two compatible orientations that differ only on that edge.

For example:

(i) (-1) [—'t) ('_'1) The same coloring is compatible with
different orientations

(1) (4

Define 'x'i(2)\+1) to be the number of compatible pairs (k,T) of 2, where T is acyclic

It’s very straightforward to show that (k,T) is compatible iff (k,T) is

To proceed further, we must first show that switching vertices, and the colors on those
vertices, by v does not affect compatibility

Note that if e = vw then

DW=+ (w) ¢ =‘>/Vaﬁn'ng C/’lanyeS

UCV) -LUiw)=+l =>K )= - k(v) i W)= ketw)

U(e)«-O‘(e) MA Thve)=- Yve)
So YNvie)- (Rl)-0te ) Klw)) =~ Tty e)(-kv) totedictw)
= (el (le(v)-o(e)kiw))  cambatbility is unchanged



U(V):'H U(w):-( =D Same 6S cuse above

U(V) -L,Yw)= I =7K (V)- F(v) k w) =- kelw)
a(e) 0‘(@) ané’b’[v,e)- Ye)

So Yvie)- (Kl)-0te) Klw)) =~ Ttye)(-kv) +otedcim)
= ft(v,e/ (k(vV)-o(e)klw)) cambut:bility is unchange ]

Therefore switching does not affect compatibility.

It is also necessary to note that contraction does not affect compatibility so long as the
contracted edge is improper. This is clear since, after switching, both vertices of the
contracted edge have the same color.

For example: -1)

- >_/ L with sabepur coloring | }(/1)

Cal/ 1% edge e

S with comlutible Pa.r (/\",/8)

) 1)
(1)

A
(z)

i W‘““ CJM/;'* )flf '0611/ (/r %,/) a‘C‘}C/ Swf“'clua?
WU % that e s fhsdive

X <) 1)
( 1<)-\U gives this vertex -1 and the rest +1

(z)



P /6 with u‘wJ T4 EC! Co/o/:“‘ﬁ k’ and orentstion ¥’

2]
<)
(-1)
(2)
LemMma 6.

Let S be a subset of I(k), let k’ and T’ be the induced coloring and orientation of 2/S,
then (k,T) is compatible iff (k’,T’°) is. In addition, if S = I(k) then (k,T) is compatible iff (k’,T’)
iS proper.

The first part is easy to see since k’ is constructed by switching and contracting and
both switching and contracting preserve compatibility. The second part follows from the
fact that if k’ is the induced coloring of 2/I(k), then k’ is proper.

Lemma 7.

Let (k,T) be a compatible pair for 2. Then C(1) is a subset of I(k), which is to say that
every edge that is a part of a cycle is improper. In addition, if k is proper, then T is
acyclic .

This can be proved by lifting 2 to 2 then applying a lemma from the proof of Stanley’s

theorem. ” o~ ~ ~
Assume that T contains a cycle, call it V, 7 Vg 7.2V, V,
Then by the condition for compatible pairs, we must have that

(U) e le() 2 ... ¢ [ (0,) £ (V)
Thas Ie(V)=lc (i) =...~k(V,)= k()

Every vertex in this cycle is colored the same color, therefore every edge in this cycle is
improper. In other words,

C(E)eI(F)

By lemmas 1 & 2, we have
COEY=0'(C(%)) and LIRK)= ¢ (1(0)
- - ~
So '(c(enNel (T(k)), so c(®)el (k)

If k is proper, then I(k) is empty so C(t) is empty, meaning that T is acyclic.



We now wish to create a bijection between compatible pairs of 2 and compatible pairs
of 2/e and 2\e for every e in 2

Let e be an edge of 2, k a coloring of ~ and k’ the induced coloring of >/e if the induced
coloring exists. Note that k’ exists iff e is improperly colored by k. Let T’ be the induced
orientation on 2/e

Define T, to be T except with the arrows of edge e reversed. Define T\e to be an
orientation on 2\e that is equal to T on edges other than e

There are 3 cases:

(1) Both (k,T) and (k,7,) are compatible. Then e must be improperly colored by k since

e)-(K)-ote) k)20 and TViE) (KW-0te) k)
= T(ve) (k-ote) k) 2o, 5 k(v)= ale)kiw)

e must be the only improper edge so (k,T\e) is compatible. e is improper, so by lemma 6,
(k’,T’) is compatible.

(2) One of (k,1) and (k, 1) is compatible. Then k must be proper on e, so k’ does not exist.
k is proper on all edges of 2, so (k,T\e) is compatible.

(3)Neither (k,T) nor (k,1) is compatible. In this case there must be some edge other than
e that is improper under k. Therefore neither of (k,t/e) and (k’,T’) are compatible.

In short, we have the following table:

comﬂm‘lble Y 5 lCoM/@"‘ue " {\C of f/c
Both (i) and (kK1) => btk (K2\e) and (K,T7)

one ﬁﬂJ anh/ cng

oA (Ict) and (k,8) =2 onlY (F%\e)
/\/et"]'il@/ =) /1/6‘.“6/‘




Similarly to the proof of Stanley’s theorem, we wish to count compatible pairs where the
orientation is acyclic.

In case 1, if one of the pairs is acyclic and the other is not (Wlog T contains a cycle), it
must be true that e is an element of every cycle in T. Therefore removing e breaks all of
these cycles while contracting e keeps these cycles intact.

For example:

w.'“n ofien "a'}fon T wZ“« ofien ILa‘}fon /C’e

A1 LI LI

G\fapl) 2\¢ G\fam’) 2/t ,
w.'" lﬁ of ien *a‘};‘on ot \ e w[" l1 of.en "a.}t‘oﬂ /Z:J

e

In this example T, is acyclic but T is not. This forces T\e to be acyclic and T’ to be cyclic.

If both T and T, are acyclic, then deleting or contracting and edge cannot introduce a
cycle, so both T\e and T’ are acyclic.

If both T and T, are cyclic, then there is a cycle that does not involve e, so both T\e and T’
are also cyclic.

In case 2, (Wlog T is compatible and T, is not) if T is acyclic then deleting e cannot create
a cycle, so T\e is acyclic. If T\e is acyclic then at least one of T and T, must be acyclic.
Remember that e must be proper in case 2. Assume T is cyclic, by lemma 7, e must be
unproper. Contradiction. Therefore T is acyclic iff T\e is.



Now, by looking at the cases, we make the observation that for each acyclic compatible
pair of 2 there is one and only one acyclic compatible pair of 2\e or >/e

Let-x’ébe the number of acyclic compatible pairs of 2. We have just shown that

}z(zm) =Z\(57‘+1) + g f2N+1)

It is clear from the definitions that}_(2A+1) =2M1 and that')(:*YH=

XGLIH

It can be shown by the same methods as in the unsigned case that
X(@A+1) = x£(2?\+1) - X (2A+1)
e (4

Also x.(2A\+1) = 2A+1 and x;‘x; X cuy Where x is the signed chromatic polynomial.

Now we can show that')@(Z}\H) = (-1)"n * x{-(2A+1)) by the exact same argument that
was used to prove Stanley’s theorem, where n is the number of vertices.

Similarly by only considering zero free colorings, and using the fact that if k is zero free,
then the induced coloring k’ on 2/I(k) is also zero free, we can define‘)'('; to be the
number of acyclic compatible pairs of 2 with k zero free and we can repeat all of these
steps to find that X (2A) = (-1)*n * xi(-2>\)

Note that when A=0 in the non-zero free case, we have that x,(0) is the number of acyclic
orientations, since there is only one way to color everything with 0.

Therefore the number of acyclic orientations of a signed graph 2 is (-1)/\n*xz(-1)



For anyone who wants to see it, here is the full inductive argument, where p is the
number of vertices and E the number of edges of a graph G

L3 N be edd TN OV LA
Lel G be a smsle Verfes with no edses

Then Ly (N = A cond Zel-))= )

S0 Zo(A) = (1) Z,y()
Acsame, Hhe Sormunla Wlds for &l oraths with
PrFen. Lt G be a gsh with P+ E=p+l
with P> 1 oud BE#0
Then Zath) = Zge O 3 Lo (N
avd Y Nz oo EA) = Zose (M)
G-e has P verficies ol B~ edses &
(6=, 5% Lo (M=) 2y (N
f The dadaction g fothesi,



Ge has O-1 verkccs and E-| edees o
_ ool
(-1)+(E-1) £ a, %0 Ll =(-1) Z a0 l-A)

Thoesre (Lo ) (T 1))

- (e )+ ( (- f’/z% -)))
= (~(){)(2ﬁ&,c (~/\>‘7CQ/C (-)\)>

S50 LeolA) = Zae N - Zor &)

= (0(2ye CN- Lo M) )

= (~()P7Z6 (-))



